Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Avian Dis ; 65(2): 227-236, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34412452

RESUMO

The history of pullorum disease is closely intertwined with the history of avian health research and that of the poultry industry. The seriousness of the disease galvanized the attention and brought together, for the first time, the pioneers of poultry health research to work cooperatively on different aspects of the disease. Control of the disease made it possible for intensive poultry production to develop as the basis for the modern poultry industry. During the early 1900s, bacillary white diarrhea (BWD) was a devastating disease of young chickens threatening the developing poultry industry. Dr. Leo F. Rettger isolated and described the bacterial pathogen, Salmonella enterica serotype Pullorum, for the first time in 1900. BWD was renamed pullorum disease in 1929. In subsequent years, Rettger and coworkers were able to reproduce the disease and fulfill Koch's postulates. Rettger et al. also showed that Salmonella Pullorum was vertically transmitted, which was the first time that a pathogen was shown to be vertically transmitted. The development of serologic tests was of crucial importance because it led to the development of effective eradication methods to identify carrier birds and to exclude these birds from the breeder flocks. The negative impact of pullorum disease on the poultry industry ultimately was one of the major reasons that the National Poultry Improvement Plan (NPIP) was developed by scientists, the poultry industry, and the United States Department of Agriculture (USDA). Needless to say, the work of the pioneering researchers formed the basis for the control of the disease. The NPIP started in 1935, with 34 states participating in testing 4 million birds representing 58.2% of the birds hatched. The program rapidly expanded to 47 states by 1948 and tested more than 30 million birds. In 1967, all commercial chicken hatcheries participating in the NPIP were 100% free of pullorum and typhoid disease caused by Salmonella enterica serotype Gallinarum. This historical overview of pullorum disease describes in some detail the progress made, especially during the early years, toward controlling this disease using methodologies that were often very basic but nonetheless effective. One has to admire the ingenuity and persistence of the early researchers leading to their achievements considering the research tools that were available at the time.


Artículo histórico­Pulorosis: Evolución de las estrategias de erradicación La historia de la pulorosis está estrechamente relacionada con la historia de la investigación en salud aviar y de la industria avícola. La severidad de la enfermedad despertó la atención y reunió, por primera vez a los pioneros de la investigación en salud avícola para trabajar de manera cooperativa en diferentes aspectos de la enfermedad. El control de la enfermedad hizo posible que la producción avícola intensiva se desarrollara como base de la industria avícola moderna. A principios de la década de los 1900, la diarrea blanca bacilar (con las siglas en inglés BWD) era una enfermedad devastadora de pollos jóvenes que amenazaba la industria avícola en desarrollo. El Dr. Leo F. Rettger aisló y describió el patógeno bacteriano, Salmonella enterica serotipo Pullorum, por primera vez en 1900. La diarrea blanca bacilar pasó a llamarse pulorosis (pullorum disease) en 1929. En los años siguientes, Rettger y sus colaboradores pudieron reproducir la enfermedad y cumplir los postulados de Koch. Rettger y col. también mostraron que Salmonella Pullorum se transmitía verticalmente, y fue la primera vez que se demostró que un patógeno se transmitía verticalmente. El desarrollo de pruebas serológicas fue de crucial importancia porque condujo al desarrollo de métodos de erradicación efectivos para identificar aves portadoras y eliminar a estas aves de las parvadas reproductoras. El impacto negativo de la pulorosis en la industria avícola fue, en última instancia, una de las principales razones por las que los científicos, la industria avícola y el Departamento de Agricultura de los Estados Unidos (USDA) desarrollaron el Plan Nacional de Mejoramiento Avícola (NPIP). Es importante decir que el trabajo de los investigadores pioneros formó la base para el control de la enfermedad. El Plan Nacional de Mejoramiento Avícola comenzó en año 1935, con 34 estados participando en el análisis de 4 millones de aves que representaban el 58.2% de las aves producidas. El programa se expandió rápidamente a 47 estados en 1948 y evaluó a más de 30 millones de aves. En 1967, todas las plantas incubadoras de pollos comerciales que participaban en el Plan Nacional de Mejoramiento Avícola estaban 100% libres de pulorosis y tifoidea aviar causada por Salmonella enterica serotipo Gallinarum. Esta reseña histórica de la pulorosis describe con cierto detalle el progreso realizado, especialmente durante los primeros años, hacia el control de esta enfermedad utilizando metodologías que a menudo eran muy básicas no obstante efectivas. Es admirable el ingenio y la persistencia de los primeros investigadores que los llevaron a sus logros considerando las herramientas de investigación que estaban disponibles en ese momento.


Assuntos
Galinhas , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella/classificação , Fatores Etários , Animais , História do Século XX , Transmissão Vertical de Doenças Infecciosas/história , Transmissão Vertical de Doenças Infecciosas/veterinária , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/transmissão , Salmonella/patogenicidade , Salmonelose Animal/história , Salmonelose Animal/microbiologia , Salmonelose Animal/transmissão
2.
Infect Genet Evol ; 86: 104599, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33096302

RESUMO

Since 2004, several outbreaks of highly pathogenic avian influenza (HPAI) have been reported in Cambodia. Until 2013, all H5N1 viruses identified in Cambodia belonged to clade 1 and its subclades. H5N1 HPAI viruses belonging to clade 2.3.2.1c have been dominant since the beginning of 2014, with various genotypes (KH1-KH5) reported. Here, we isolated nine H5N1 HPAI viruses from domestic poultry farms and slaughterhouses in Cambodia during 2018-2019 and performed phylogenetic analysis of whole genome sequences. All isolates were classified as H5 clade 2.3.2.1c viruses and all harbored multi-basic amino acid sequences (PQRERRRKR/GLF) at the haemagglutinin (HA) cleavage site. Phylogenetic analysis revealed that the H5N1 isolates in this study belonged to the KH2 genotype, the dominant genotype in Cambodia in 2015. Phylogenetic analysis of the HA gene showed that the isolates were divided into two groups (A and B). The results of Bayesian discrete phylogeography analysis revealed that the viral migration pathways from Vietnam to Cambodia (Bayes factor value: 734,039.01; posterior probability: 1.00) and from Cambodia to Vietnam (Bayes factor value: 26,199.95; posterior probability: 1.00) were supported by high statistical values. These well-supported viral migrations between Vietnam and Cambodia demonstrate that viral transmission continued in both directions. Several factors may have contributed to this, including the free-grazing duck system and movement of poultry-related products. Thus, the results emphasize the need for an enhanced international surveillance program to better understand transboundary infection and evolution of H5N1 HPAI viruses, along with implementation of more stringent international trade controls on poultry and poultry products.


Assuntos
Genótipo , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Camboja/epidemiologia , História do Século XXI , Humanos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Doenças das Aves Domésticas/história , Vigilância em Saúde Pública
3.
Viruses ; 12(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290398

RESUMO

H9N2 subtype avian influenza virus (AIV) is widely prevalent in poultry, and the virus is becoming adaptive to mammals, which poses pandemic importance. Here, BALB/c mice were employed as a model to evaluate the adaption in mammals of 21 field H9N2 viruses isolated from avian species between 2016 to 2019 in China. The replication capacity of the viruses was evaluated in the lungs of mice. The pathogenicity of the viruses were compared by weight loss and lung lesions from infected mice. The whole genomic sequences of the viruses were further characterized to define the associated phenotypes of the H9N2 viruses in vitro and in vivo. The results showed that most viruses could replicate well and cause lesions in the mouse lungs. The propagation capacity in MDCK cells and damage to respiratory tissues of the infected mice corresponded to relative viral titers in the mouse lungs. Further genome analysis showed that all of the H9N2 viruses belonged to the same genotype, G57, and contained a couple of amino acid substitutions or deletions that have been demonstrated as avian-human markers. Additionally, nine amino acids residues in seven viral proteins were found to be correlated with the replication phenotypes of the H9N2 viruses in mammals. The study demonstrated that a well-defined H9N2 AIV genotype with high adaption in mammals was prevalent in China in recent years. Further investigations on the role of the identified residues and continuous surveillance of newly identified mutations associated with host adaption should be strengthened to prevent any devastating human influenza pandemics.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , RNA Viral , Animais , Linhagem Celular , Galinhas , Patos , História do Século XXI , Mamíferos , Camundongos , Doenças das Aves Domésticas/história , Prevalência , Carga Viral
4.
Viruses ; 12(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224965

RESUMO

Newcastle disease is an important poultry disease that also affects Columbiform birds. The viruses adapted to pigeons and doves are referred to as pigeon paramyxoviruses 1 (PPMV-1). PPMV-1 are frequently isolated from pigeons worldwide and have the potential to cause disease in chickens. The complete genomes of 18 PPMV-1 isolated in China during 2012-2018 were sequenced by next-generation sequencing (NGS). Comprehensive phylogenetic analyses showed that five of the viruses belong to sub-genotype VI1.2.1.1.2.1 and 13 isolates belong to sub-genotype VI.2.1.1.2.2. The results demonstrate that these sub-genotypes have been predominant in China during the last decade. The viruses of these sub-genotypes have been independently maintained and continuously evolved for over 20 years, and differ significantly from those causing outbreaks worldwide during the 1980s to 2010s. The viral reservoir remains unknown and possibilities of the viruses being maintained in both pigeon farms and wild bird populations are viable. In vivo characterization of the isolates' pathogenicity estimated mean death times between 62 and 114 hours and intracerebral pathogenicity indices between 0.00 and 0.63. Cross-reactivity testing showed minor antigenic differences between the studied viruses and the genotype II LaSota vaccine. These data will facilitate PPMV-1 epidemiology studies, vaccine development, and control of Newcastle disease in pigeons and poultry.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/genética , Columbidae/virologia , Genoma Viral , Genômica , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Avulavirus/imunologia , Avulavirus/isolamento & purificação , China/epidemiologia , Reações Cruzadas , Genômica/métodos , Genótipo , História do Século XXI , Epidemiologia Molecular , Filogenia , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/imunologia , Sequenciamento Completo do Genoma
6.
Infect Genet Evol ; 80: 104177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31917362

RESUMO

The presence of infectious bronchitis virus (IBV) was identified for the first time in the poultry population in Poland at the end of the 1960s. From this time a few waves of epidemics caused by different IBV variants spread across the country. In order to gain more insight into the molecular epidemiology of IBV in Poland, in the present study the S1 coding region of 34 IBV isolates and nearly whole genome of 10 strains collected over a period of 38 years was characterized. Phylogenetic analysis showed that these strains belonged to five recently established IBV lineages: GI-1, GI-12, GI-13, GI-19 and GI-23. Additionally, two strains from 1989 and 1997 formed a separate branch of the phylogenetic tree categorized as unique early Polish variants, and one strain was revealed to be the recombinant of these and GI-1 lineage viruses. Irrespective of year of isolation and S1-dependent genotype, the genome sequences of Polish IBV strains showed the presence of six genes and 13 ORFs: 5'UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3'UTR, however their individual genes and putative proteins had different lengths. The phylogenetic analyses performed on the genome of ten Polish IBV strains revealed that they cluster into different groups. The Polish GI-1, GI-19 and GI-23 strains cluster with other similar viruses of these lineages, with the exception of the two strains from 1989 and 1997 which are different. It seems that in Poland in the 1980s and 1990s IBV strains with a unique genome backbone circulated in the field, which were then replaced by other strains belonging to other IBV lineages with a genome backbone specific to these lineages. The recombination analysis showed that some Polish strains resulted from a recombination event involving different IBV lineages, most frequently GI-13 and GI-19.


Assuntos
Galinhas/virologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Genoma Viral , Genômica/métodos , História do Século XX , História do Século XXI , Epidemiologia Molecular , Filogenia , Polônia/epidemiologia , Doenças das Aves Domésticas/história , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/genética , Sequenciamento Completo do Genoma
7.
Emerg Infect Dis ; 25(12): 2226-2234, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742539

RESUMO

In 2014, antimicrobial drug-resistant Campylobacter jejuni sequence type 6964 emerged contemporaneously in poultry from 3 supply companies in the North Island of New Zealand and as a major cause of campylobacteriosis in humans in New Zealand. This lineage, not previously identified in New Zealand, was resistant to tetracycline and fluoroquinolones. Genomic analysis revealed divergence into 2 major clades; both clades were associated with human infection, 1 with poultry companies A and B and the other with company C. Accessory genome evolution was associated with a plasmid, phage insertions, and natural transformation. We hypothesize that the tetO gene and a phage were inserted into the chromosome after conjugation, leaving a remnant plasmid that was lost from isolates from company C. The emergence and rapid spread of a resistant clone of C. jejuni in New Zealand, coupled with evolutionary change in the accessory genome, demonstrate the need for ongoing Campylobacter surveillance among poultry and humans.


Assuntos
Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/genética , Genoma Bacteriano , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/história , Campylobacter jejuni/classificação , Campylobacter jejuni/isolamento & purificação , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Genômica/métodos , História do Século XXI , Humanos , Tipagem de Sequências Multilocus , Nova Zelândia/epidemiologia , Filogenia , Plasmídeos , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/história , Tetraciclina/farmacologia , Sequenciamento Completo do Genoma
8.
BMC Vet Res ; 15(1): 351, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638995

RESUMO

BACKGROUND: Viral diseases are a matter of great concern for poultry farmers in Pakistan. Multiple common viral respiratory diseases (CVRDs) cause huge economic losses in the poultry industry. The prevalence of CVRDs in many countries, including Pakistan, is not clearly understood. RESULTS: Incidences of 5 chicken respiratory viruses: avian influenza virus (AIV), Newcastle disease virus (NDV/AAVV-1), infectious bronchitis virus (IBV), avian metapneumovirus (aMPV) and infectious laryngotracheitis virus (ILTV) were assessed on commercial Pakistani farms with respiratory problems from 2014 through to 2016. While AIV and AAVV-1 were frequently detected (16 to 17% of farms), IBV and aMPV were rarely detected (in 3 to 5% of farms) and ILTV was not detected. We characterized H9 AIV of the G1 lineage, genotype VII AAVV-1, GI-13 IBV, and type B aMPV strains with very little genetic variability in the 2-year study period. Co-infections with AIV and AAVV-1 were common and wild type AAVV-1 was detected despite the use of vaccines. Control measures to limit the virus burden in chicken flocks are discussed. CONCLUSIONS: Our data shows that AIV (H9), AAVV-1, IBV and aMPV are prevalent in commercial poultry in Pakistan. Further studies are necessary to assess circulating strains, economic losses caused by infections and coinfections of these pathogens, and the costs and benefits of countermeasures. Furthermore, veterinarians and farmers should be informed of the pathogens circulating in the field and hence advised on the use of vaccines.


Assuntos
Galinhas , Doenças das Aves Domésticas/virologia , Viroses/veterinária , Animais , Galinhas/genética , Herpesvirus Galináceo 1 , História do Século XXI , Incidência , Vírus da Bronquite Infecciosa , Vírus da Influenza A , Metapneumovirus , Epidemiologia Molecular , Paquistão/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/história , Prevalência , Viroses/epidemiologia , Viroses/história
9.
Emerg Infect Dis ; 25(6): 1110-1117, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107212

RESUMO

During 2014-2017, we isolated a novel orthobunyavirus from broiler chickens with severe kidney lesions in the state of Kedah, Malaysia; we named the virus Kedah fatal kidney syndrome virus (KFKSV). Affected chickens became listless and diarrheic before dying suddenly. Necropsies detected pale and swollen kidneys with signs of gout, enlarged and fragile livers, and pale hearts. Experimental infection of broiler chickens with KFKSV reproduced the disease and pathologic conditions observed in the field, fulfilling the Koch's postulates. Gene sequencing indicated high nucleotide identities between KFKSV isolates (99%) and moderate nucleotide identities with the orthobunyavirus Umbre virus in the large (78%), medium (77%), and small (86%) genomic segments. KFKSV may be pathogenic for other host species, including humans.


Assuntos
Infecções por Bunyaviridae/veterinária , Galinhas/virologia , Orthobunyavirus , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Biópsia , Genes Virais , Geografia Médica , História do Século XXI , Malásia/epidemiologia , Orthobunyavirus/classificação , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/história , Vigilância em Saúde Pública , RNA Viral
10.
11.
Emerg Infect Dis ; 24(10): 1840-1848, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226167

RESUMO

Eurasia highly pathogenic avian influenza virus (HPAIV) H5 clade 2.3.4.4 emerged in North America at the end of 2014 and caused outbreaks affecting >50 million poultry in the United States before eradication in June 2015. We investigated the underlying ecologic and epidemiologic processes associated with this viral spread by performing a comparative genomic study using 268 full-length genome sequences and data from outbreak investigations. Reassortant HPAIV H5N2 circulated in wild birds along the Pacific flyway before several spillover events transmitting the virus to poultry farms. Our analysis suggests that >3 separate introductions of HPAIV H5N2 into Midwest states occurred during March-June 2015; transmission to Midwest poultry farms from Pacific wild birds occurred ≈1.7-2.4 months before detection. Once established in poultry, the virus rapidly spread between turkey and chicken farms in neighboring states. Enhanced biosecurity is required to prevent the introduction and dissemination of HPAIV across the poultry industry.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Animais , Teorema de Bayes , Surtos de Doenças , Genoma Viral , História do Século XXI , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/história , América do Norte/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/história , RNA Viral , Vírus Reordenados
13.
Br Poult Sci ; 58(1): 1-12, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27724044

RESUMO

1. Infectious diseases have a large impact on poultry health and economics. Elucidating the pathogenesis of a certain disease is crucial to implement control strategies. 2. Multiplication of a pathogen and its characterisation in vitro are basic requirements to perform experimental studies. However, passaging of the pathogen in vitro can influence the pathogenicity, a process targeted for live vaccine development, but limits the reproduction of clinical signs. 3. Numerous factors can influence the outcome of experimental infections with some importance on the pathogen, application route and host as exemplarily outlined for Histomonas meleagridis, Gallibacterium anatis and fowl aviadenoviruses (FAdVs). 4. In future, more comprehensive and detailed settings are needed to obtain as much information as possible from animal experiments. Processing of samples with modern diagnostic tools provides the option to closely monitor the host-pathogen interaction.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/microbiologia , Simbiose , Infecções por Adenoviridae/história , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/classificação , Galinhas , Inglaterra , Adenovirus A das Aves , História do Século XIX , História do Século XX , História do Século XXI , Pasteurellaceae/classificação , Infecções por Pasteurellaceae/história , Infecções por Pasteurellaceae/microbiologia , Infecções por Pasteurellaceae/veterinária , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/parasitologia , Infecções Protozoárias em Animais/história , Infecções Protozoárias em Animais/parasitologia
14.
Avian Dis ; 60(4): 715-724, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27902902

RESUMO

Shortly after the isolation of Marek's disease (MD) herpesvirus (MDV) in the late 1960s vaccines were developed in England, the United States, and The Netherlands. Biggs and associates at the Houghton Poultry Research Station (HPRS) in England attenuated HPRS-16, the first cell-culture-isolated MDV strain, by passaging HPRS-16 in chick kidney cells. Although HPRS-16/Att was the first commercially available vaccine, it never became widely used and was soon replaced by the FC126 strain of herpesvirus of turkeys (HVT) vaccine developed by Witter and associates at the Regional Poultry Research Laboratory (now Avian Disease and Oncology Laboratory [ADOL]) in East Lansing, MI. Ironically, Kawamura et al. isolated a herpesvirus from kidney cell cultures from turkeys in 1969 but never realized its potential as a vaccine against MD. Rispens of the Central Veterinary Institute (CVI) developed the third vaccine. His associate, Maas, had found commercial flocks of chickens with MDV antibodies but without MD. Subsequently, Rispens isolated a very low pathogenic strain from hen number 988 from his MD antibody-positive flock, which was free of avian leukosis virus and clinical MD. This isolate became the CVI-988 vaccine used mostly in The Netherlands. During the late 1970s, HVT was no longer fully protective against some new emerging field strains. The addition of SB-1, isolated by Schat and Calnek, to HVT improved protection against the emerging very virulent strains. In the 1990s CVI-988 became the worldwide vaccine gold standard. This review will present data from published papers and personal communications providing additional information about the exciting 15-yr period after the isolation of MDV to the development of the different vaccines.


Assuntos
Vacinas contra Doença de Marek/história , Vacinas contra Doença de Marek/imunologia , Doença de Marek/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Herpesvirus Galináceo 3/genética , Herpesvirus Galináceo 3/imunologia , História do Século XX , História do Século XXI , Doença de Marek/história , Doença de Marek/imunologia , Doença de Marek/virologia , Vacinas contra Doença de Marek/administração & dosagem , Vacinas contra Doença de Marek/genética , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia
16.
Notes Rec R Soc Lond ; 70(2): 175-201, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27386716

RESUMO

This paper uses a short 'Christmas fairy-story for oncologists' sent by Christopher Andrewes with a 1935 letter to Peyton Rous as the centrepiece of a reflection on the state of knowledge and speculation about the viral aetiology of cancer in the 1930s. Although explicitly not intended for public circulation at the time, the fairy-story merits publication for its significance in the history of ideas about viruses, which are taken for granted today. Andrewes and Rous were prominent members of the international medical research community and yet faced strong resistance to their theory that viruses could cause such tumours as chicken sarcomas and rabbit papillomas. By looking at exchanges between these men among themselves and other proponents of their theories and with their oncologist detractors, we highlight an episode in the behind-the-scenes workings of medical science and show how informal correspondence helped keep alive a vital but then heterodox idea about the role of viruses in causing cancer.


Assuntos
Galinhas , Neoplasias/história , Papiloma/história , Coelhos , Sarcoma/história , Animais , Correspondência como Assunto/história , História do Século XX , Humanos , Neoplasias/virologia , Papiloma/virologia , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/virologia , Sarcoma/virologia , Reino Unido , Estados Unidos
17.
Avian Dis ; 60(1 Suppl): 172-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27309052

RESUMO

Since the first outbreak of low pathogenic avian influenza (LPAI) in 1996, outbreaks of LPAI have become more common in Korea, leading to the development of a nationwide mass vaccination program in 2007. In the case of highly pathogenic avian influenza (HPAI), four outbreaks took place in 2003-04, 2006-07, 2008, and 2010-11; a fifth outbreak began in 2014 and was ongoing at the time of this writing. The length of the four previous outbreaks varied, ranging from 42 days (2008) to 139 days (2010-11). The number of cases reported by farmers that were subsequently confirmed as HPAI also varied, from seven cases in 2006-07 to 53 in 2010-11. The number of farms affected by the outbreaks varied, from a low of 286 (2006-07) with depopulation of 6,473,000 birds, to a high of 1500 farms (2008) with depopulation of 10,200,000 birds. Government compensation for bird depopulation ranged from $253 million to $683 million in the five outbreaks. Despite the damage caused by the five HPAI outbreaks, efficient control strategies have yet to be established. Meanwhile, the situation in the field worsens. Analysis of the five HPAI outbreaks revealed horizontal farm-to-farm transmission as the main factor effecting major economic losses. However, horizontal transmission could not be efficiently prevented because of insufficient transparency within the poultry industry, especially within the duck industry, which is reluctant to report suspicious cases early. Moreover, the experiences and expertise garnered in previous outbreaks has yet to be effectively applied to the management of new outbreaks. Considering the magnitude of the economic damage caused by avian influenza and the increasing likelihood of its endemicity, careful and quantitative analysis of outbreaks and the establishment of control policies are urgently needed.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Aves , Surtos de Doenças/história , História do Século XXI , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/história , Influenza Aviária/virologia , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/virologia , República da Coreia/epidemiologia
18.
Avian Dis ; 59(4): 512-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26629625

RESUMO

Subtype H3 influenza A viruses (IAVs) are abundant in wild waterfowl and also infect humans, pigs, horses, dogs, and seals. In Minnesota, turkeys are important and frequent hosts of IAV from wild waterfowl and from pigs. Over 48 yr of surveillance history, 11 hemagglutinin (HA) subtypes of IAV from waterfowl, as well as two HA subtypes from swine, H1 and H3, have infected turkeys in Minnesota. However, there have only been two cases of avian-origin H3 IAV infections in turkeys during this 48-yr period. The first avian-origin IAV infection was detected in seven breeder and commercial flocks in 1982 and was caused by a mixed H3H4/N2 infection. In 2013, an avian-origin H3H9/N2 outbreak occurred in five flocks of turkeys between 15 and 56 wk of age. Phylogenetic analysis of the HA gene segment from the 2013 isolate indicated that the virus was related to a wild bird lineage H3 IAV. A meta-analysis of historical H3 infections in domesticated poultry demonstrated that avian-origin H3 infections have occurred in chickens and ducks but were rare in turkeys. H9N2 virus was subsequently selected during the egg cultivation of the 2013 H3H9/N2 mixed virus. A growth curve analysis suggested that passage 3 of A/Turkey/Minnesota/13-20710-2/2013(mixed) had a slightly lower replication rate than a similar avian-origin H3N2. The challenge studies indicated that the infectious dose of avian-origin H3N2 for turkey poults was greater than 10(6) 50% egg infective dose. Considered together, these data suggest that avian-origin H3 introductions to turkeys are rare events.


Assuntos
Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Perus , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Hemaglutininas Virais/genética , História do Século XX , História do Século XXI , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/história , Influenza Aviária/virologia , Minnesota/epidemiologia , Filogenia , Doenças das Aves Domésticas/história , Doenças das Aves Domésticas/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...